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Abstract

MPI support is nearly ubiquitous on high performance
systems today, and is generally highly tuned for perfor-
mance. It would thus seem to offer a convenient “portable
network assembly language” to developers of parallel pro-
gramming languages who wish to target different network
architectures. Unfortunately, neither the traditional MPI
1.1 API, nor the newer MPI 2.0 extensions for one-sided
communication provide an adequate compilation target for
global address space languages, and this is likely to be the
case for many other parallel languages as well. Simulating
one-sided communication under the MPI 1.1 API is too ex-
pensive, while the MPI 2.0 one-sided API imposes a number
of significant restrictions on memory access patterns that
that would need to be incorporated at the language level,
as a compiler can not effectively hide them given current
conflict and alias detection algorithms.

1 Introduction

Global address-space (GAS) languages, such as Unified
Parallel C (UPC) [10], Titanium [30], and Co-Array For-
tran [26], are an emerging class of languages that seek to
give parallel application developers an alternative to the tra-
ditional message passing model. By providing the illusion
of a shared address space to a distributed program (regard-
less of the underlying hardware), along with programmatic
awareness and control of memory layout across processors,
they promise to combine the performance of message pass-
ing systems with the convenience of shared memory pro-
gramming.

As researchers involved in developing portable imple-
mentations of two of these languages (Berkeley UPC [7]

and Titanium [30]), we have invested (and continue to in-
vest) substantial amounts of effort into porting our software
to new network architectures and programming interfaces.

Many other scientists and hardware vendors, upon learn-
ing this, have asked us why we do not simply write our lan-
guage on top of MPI, to avoid this porting effort. As the
most common parallel programming interface on contem-
porary supercomputing platforms, MPI has typically been
highly tuned for performance. It has also been described by
some of its developers as providing an ”assembly language
for parallel processing” [13]. Presumably, then, it ought
to provide an efficient, portable target for parallel language
compilers.

Unfortunately for GAS language implementors, this is
not the case. This paper explains why both the tradi-
tional MPI 1.1 two-sided interface [25] and the newer MPI
2.0 [24] one-sided interface (hereafter referred to as MPI-
RMA) are inadequate compilation targets for global address
space languages. The two-sided communication model in-
herent in MPI 1.1 cannot support the one-sided commu-
nication requirements of GAS languages as efficiently as
lower-level APIs. The newer one-sided MPI-RMA presents
an interface that, while undoubtedly of great use to many
application developers, presents a number of restrictions on
memory access patterns that would require conflict and alias
analysis that is beyond the reach of current compilers. The
difficulties presented by MPI-RMA as a compilation target
are not specific to GAS languages, and are likely to present
an obstacle to any parallel programming language which
does not expose application developers to MPI-RMA’s nu-
merous restrictions on memory usage patterns.

1.1 Global Address Space languages and their
communication requirements

The common characteristic of all GAS languages is that
they provide programmers with a shared memory abstrac-
tion between all processors in an application (regardless of
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whether shared memory is actually supported natively in
hardware), and that the programmer is given both knowl-
edge and control of the layout of shared memory across pro-
cessors. The shared memory model of GAS languages pro-
vides the programmer with a familiar interface in which any
piece of shared memory can be accessed by any processor in
an application via the normal data access mechanisms built
into the language, i.e., by accessing an element of a shared
array, dereferencing a pointer to shared data, or simply ref-
erencing the name of a shared variable. Of course, on many
platforms the access time for touching shared memory will
depend heavily on the location of the data, and so GAS lan-
guages make the layout of shared memory explicit to the
programmer, who is encouraged to write code that takes ad-
vantage of locality in order to achieve higher performance.

This combination of a globally shared address space
with locality information allows an incremental develop-
ment model, in which serial or shared-memory codes can
initially be näıvely ported to a distributed environment, pro-
filed to isolate bottlenecks, and then gradually tuned to op-
timize performance. The compiler for a GAS language
may also be able to hide some or all of the latency cost of
remote accesses by scheduling unrelated computation (or
more communication) during the interim imposed by net-
work traffic.

GAS languages have some differences in how they al-
low shared memory to be allocated, and/or how they dis-
tinguish shared and non-shared data. UPC and Co-Array
Fortran require the programmer to explicitly declare data
objects to be either shared or private (usage varies by ap-
plication, but typically the major data structures reside in
shared space). In Titanium, by contrast, all heap and static
data can potentially be accessed remotely [14], although
a sophisticated compiler escape analysis [19] can detect
which objects are potentially “shared” (interesting applica-
tions typically have about 50-100% of the total bytes allo-
cated judged to be shared by the analysis). Dynamic allo-
cations of shared memory must be collective in Co-Array
Fortran, while they can also be achieved in UPC and Tita-
nium through purely local, non-collective operations. UPC
also allows shared objects to be allocated on remote pro-
cesses using a non-collective operation (upcglobal alloc())
with no explicit cooperation from the process allocating the
data.

Remote data access in GAS languages naturally has a
one-sided communication pattern. In part, this is a mat-
ter of providing a familiar and convenient interface to pro-
grammers who are used to a shared-memory programming
model, but there is also an important class of dynamic and
irregular applications that we wish to support which have
communication patterns that are data-dependent and there-
fore statically unpredictable, and hence are most naturally
expressed using one-sided operations.

In GAS languages, the ability to predict data access pat-
terns is further limited by the fact that all three of these GAS
languages allow accesses to shared objects with affinity to
the calling thread via “local” pointers, and these accesses
are indistinguishable from accesses to purely local (private)
objects, i.e., the languages’ semantics provide no explicit
information about whether the memory being accessed is
potentially shared or not. In each language, accesses to
shared data which reside locally using “local” pointers gen-
erally provide significantly better performance than access
through “global” pointers. In fact, the performance impact
is so dramatic that most UPC programmers specifically op-
timize for this case, and the Titanium compiler includes a
specialized analysis [18] to automatically infer when such a
transformation is provably legal.

A result of these data dependent access patterns and
shared/local aliasing is that compilers for GAS languages
generally have no way to know a priori which specific
shared memory locations will be accessed remotely, or
when they will be accessed. They thus have no way to stat-
ically check, for instance, if data accesses from different
processors will conflict at runtime. This is exactly analo-
gous to the problem of static alias analysis in sequential,
pointer-based languages, but is complicated by the exis-
tence of multiple independent threads of control – for in-
depth discussion, see [16, 27, 23].

Given these properties of GAS languages, they present
the following requirements for any underlying network in-
terface:

• The ability to perform (or at least simulate) one-sided
communication (i.e., where only the initiator is explic-
itly involved and the communication proceeds inde-
pendently of any action taken by the remote threads).
While one-sided communication can be simulated by
the language runtime using an underlying two-sided
communication API, neither the user nor the compiler
may be exposed to any aspect of implementing mes-
sage receipts (or other bookkeeping) on the remote
side of an access.

• Good latency performance for small remote accesses.
Small messages are commonly used in initial imple-
mentations of many GAS programs, and may be un-
avoidable even in well-tuned applications in certain
problem domains. The performance of applications
written in global-address space languages is thus often
very sensitive to network latency.

• The ability for the compiler to hide network laten-
cies by overlapping communication with computation
and/or other communication, through the use of non-
blocking remote accesses. This requires that the soft-
ware overhead involved in network traffic be less than
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the latency of messages (and/or the gap between how
often the network interface will accept overlapping
messages), as overlapping is impossible if the host
CPU is busy throughout a messaging operation.

• Support for arbitrary access patterns to shared data.
This includes allowing concurrent remote accesses to
the same regions of shared memory from different re-
mote processors, as well as support for allowing shared
data to be accessed at arbitrary points in the program
via local pointers.

• Support for using or implementing collective commu-
nication and synchronization operations.

The rest of this paper shows that neither the MPI 1.1 or
the newer MPI-RMA interfaces support all of these charac-
teristics adequately.

2 MPI 1.1 as a compilation target for GAS
languages

The most widely available and portable software inter-
face for programming distributed memory machines to-
day is that provided by the MPI 1.1 specification, which
has been implemented and carefully tuned on most con-
temporary high-performance parallel systems. As such, it
presents a very tempting compilation target for GAS lan-
guages, which could potentially run on all such systems
simply by providing a single networking layer that runs on
top of MPI.

Communication under MPI 1.1 is strictly two-sided: all
traffic takes the form of message sends, which require
matching receive operations to be explicitly issued on the
receiving side. While this does not neatly match the GAS
model of one-sided communication, it does not disqualify
MPI 1.1 from use by GAS languages. Our group has imple-
mented an MPI layer [1] which transparently handles mes-
sage receipt in the runtime by periodically polling for new
message receipts, thus providing the illusion of a one-sided
interface to both the user and the compiler. We have used
this MPI layer on a number of platforms, including the IBM
SP, the Cray T3E, the SGI Origin 2000, Linux and Com-
paq Alphaserver systems using Quadrics network hardware,
and Linux clusters using Myrinet, Dolphin/SCI, and Ether-
net networks. This portable MPI layer has proven to be an
invaluable tool for quickly deploying our systems on new
architectures.

However, as Figure1 shows, use of MPI 1.1 implemen-
tations does not come without a cost. This microbench-
mark data gathered by our group (and described in detail
in [4]), demonstrate that the latency and/or software over-
head associated with small message sends in MPI is typ-
ically much higher than when using native network APIs.

This difference is most pronounced on the lowest-latency
systems which are the most likely targets for GAS appli-
cations, with more than a factor of five difference between
MPI performance and that of some native machine APIs.

It should be noted that the MPI data in Figure1 were
gathered using nonblocking send and receive calls, and that
these calls tend to incur higher overhead than their block-
ing counterparts in most MPI implementations [4]. It is
not clear whether these nonblocking overheads are unavoid-
able, or are simply the result of less tuning by vendors:
most MPI applications use blocking functions, and ven-
dor benchmarks generally report only numbers for blocking
send/recv calls. Use of at least some nonblocking calls is
necessary when simulating one-sided communication with
a two-sided API, in order to prevent deadlock (which could
otherwise be caused trivially by two processors sending a
message to each other at the same time). Nonblocking calls
are also desirable in a GAS language context, as compilers
may be able to overlap computation (and/or other network
calls) within the interval where the CPU would otherwise
be blocked.

To more easily support porting our UPC and Titanium
implementations, we use a portable, high-performance net-
working library called GASNet [5]. This is the layer which
provides the one-sided messaging abstraction over MPI 1.1.
Besides MPI 1.1, GASNet has also been implemented di-
rectly over the native APIs of a number of high-performance
networks (the IBM SP’s LAPI [17], Myrinet’s GM [12],
Quadrics’ elan [11], and Infiniband [15]). UPC and Tita-
nium applications can switch the underlying network used
with a simple recompilation, and this gives us the ability
to compare the performance of a single application run us-
ing MPI 1.1 for communication with its timing when run
over a lower-level network API. Figures2, 3, and5 show
the difference in performance between a set of UPC appli-
cations running on an Compaq Alphaserver system with a
Quadrics interconnect: a naı̈ve and a bulk-synchronous ver-
sion of the NAS Parallel Benchmarks [2] Conjugate Gra-
dient, and a bulk-synchronous implementation of the NAS
Multigrid benchmark. Figures4 and6 show the same bulk
CG and MG codes running on an x86-Linux Myrinet clus-
ter. Finally, Figure7 shows the performance of the MG
benchmark on an IBM SP Power3. The applications were
compiled with the Berkeley UPC Compiler v1.0beta [7] to
use either MPI-1.1 or the lower-level elan layer for commu-
nication. For comparison purposes, on the Compaq system
we also show the performance for the same applications
when compiled with the 2.1-003 version of the Compaq
UPC compiler [8], which compiles executables to use the
elan API (data for Compaq UPC is omitted for higher num-
bers of nodes due to a recently-discovered performance bug
which is still pending). In all cases, the network and system
hardware being used is identical–the only difference is the
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Figure 1. Send and receive software overheads ( os and or) superimposed on the one-way end-to-end
latency ( EEL) for 8-byte messages on various high-performance systems. For MPI on the T3E and
Myrinet, the sum of the overheads is greater then EEL, and so os = S + V and or = R + V . For the
other configurations os = S and or = R.
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Figure 2. Performance for a na ı̈ve (fine-grained) UPC implementation of NAS Conjugate Gradient
using different network APIs/compilers on a Compaq AlphaServer
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Bulk-synchronous CG 
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Figure 3. Performance for a bulk-synchronous UPC implementation of NAS Conjugate Gradient using
different network APIs/compilers on a Compaq AlphaServer
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Figure 4. Performance for a bulk-synchronous UPC implementation of NAS Conjugate Gradient using
different network APIs with the Berkeley UPC compiler over Myrinet/GM
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Figure 5. Performance for a bulk-synchronous UPC implementation of NAS Multigrid using different
networks APIs/compilers on a Compaq AlphaServer
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Figure 6. Performance for a bulk-synchronous UPC implementation of NAS Multigrid using different
network APIs with the Berkeley UPC compiler over Myrinet/GM
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Figure 7. Performance for a bulk-synchronous UPC implementation of NAS Multigrid using different
network APIs with the Berkeley UPC compiler on an IBM SP

runtime system and communication software in use.

The results show that the MPI 1.1-based GASNet layer
is significantly outperformed by those based directly over
one-sided networking APIs. The communication costs of
the bulk-synchronous CG code are dominated by bulk put
operations (avg 56KB each) and some small (8 byte) gets,
whereas the MG code is dominated by bulk get operations
(avg 100KB each) and some small (8 byte) gets. For the
two bulk synchronous benchmarks, the performance gap is
less a function of any inherent difference between the MPI
bandwidth and that of the lower-level API (the two tend to
be similar on each system), than of the cost of providing the
illusion of one-sided communication under MPI 1.1.

Currently, our GASNet-MPI implementation works by
having each host perform a set of nonblocking receive calls
in advance, with varying buffer sizes, so that a buffer of
the correct size is generally immediately available for any
incoming message. This allows a remote processor to com-
plete a message send before the target processor may even
be aware that the message has arrived. This buffering strat-
egy requires that the message be copied twice, however
(once on the source node, to add header specifying the des-
tination address, and once at the target node, to move the
data from the buffer to the final destination).

The GASNet-MPI implementation could probably pro-
vide better performance for large messages if it used the
initial receive buffer to inform the target CPU to set up a
receive call that placed the data directly into the destination

memory, thus avoiding buffering. However, this would still
be inherently slower than the elan-based direct RDMA ver-
sion: the transaction would incur an additional rendezvous
(in the form of a set of MPI messages) to set up the direct
receive call (and likely an additional network round trip as
MPI did its own internal rendezvous), followed by the direct
RMA transfer, and then a final MPI message from the des-
tination processor informing the initiator that the message
had completed (MPI does not provide built in notification of
remote completion, but it is required for GAS language se-
mantics, which sometimes need to guarantee target comple-
tion for remote writes). The transaction would also need to
wait initially for the remote processor to poll the network to
see the initial setup message. For messages of a sufficiently
large size, however, these costs ought to be amortized to the
point where the MPI layer’s peak bandwidth performance
might asymptotically approach that of the elan layer (when
the remote node is well-attentive to the network). It unclear
what the crossover message size would be for this sort of
algorithm, however, and it would need to be tuned for each
different type of network (and possibly on a per-machine
basis), thus lessening the portability benefit of using MPI.

The performance of the naı̈ve CG benchmark (which
uses an average message size of only 8 bytes) is less am-
biguous. For applications which use small messages, elan
provides a significant speedup, allowing the application to
run more than four times faster. Clearly the communica-
tion performance obtained by directly targeting the native
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network API is more suitable than a solution layered on
MPI for supporting an incremental programming model for
parallel applications and for inherently fine-grained appli-
cations.

It is unclear if MPI 1.1 will ever be able to provide GAS
languages with the same performance as native network
APIs for small and medium-sized one-sided messages. The
popularity of MPI has meant that vendors are willing to ex-
pend considerable effort tuning their implementations, and
certain trends are promising, such as the offloading of some
of MPI’s message-passing logic onto dedicated network co-
processors. Although such co-processors are not likely to
improve end-to-end message latency, they might lower the
host CPU’s software overheads to levels comparable to that
of lower-level network APIs, which might in turn allow a
UPC implementation to hide the latency by performing un-
related work in the interim.

3 MPI-RMA as a compilation target for GAS
languages

The most recent version of the MPI specification (MPI
2.0) extends MPI 1.1 with a number of new features. In par-
ticular, Chapter 6 of the specification adds support for “one-
sided communications” (also called “Remote Memory Ac-
cess (RMA)”). This extension supplements the traditional
two-sided MPI communication model with a one-sided in-
terface that can take advantage of RMA network hardware,
with its shared memory paradigm, and lower latency and
software overhead costs.

On the surface MPI-RMA thus seems like a natural fit
for GAS languages. However, the rest of this document ex-
plains why MPI-RMA does not meet the requirements laid
out in section1.1 for implementing global address space
languages. Essentially, the strong restrictions placed on
memory access patterns by the API and the weakness of
its semantic guarantees make it unusable for GAS language
implementation purposes.

Note that we are interested in writing portable code, and
are therefore not concerned with the behavior of particular
implementations of MPI-RMA (which may happen to relax
some of these constraints, and/or have well-defined seman-
tics for conditions the specification labels as erroneous), but
rather with the guarantees provided byanyMPI-RMA im-
plementation (including one which aggressively exploits the
intentionally under-specified aspects of the API).

3.1 Basics of the MPI-RMA API

The semantics of MPI-RMA are fairly complex. Here
we present only an overview of its usage, then proceed to
discuss those aspects of the API that affect GAS language
implementations. The reader may consult the MPI 2.0 spec-
ification [24] for details.

The MPI-RMA API revolves around the use of abstract
objects called “windows” which intuitively specify regions
of a process’s memory which have been made available
for remote operations by other MPI processes. Windows
are created using a collective operation (MPIWin create)
called by all processes within a “communicator” (a group of
processes in MPI terminology), which specifies a base ad-
dress and length (which may be different on each process),
and is permitted to span very large areas (e.g., the entire
virtual address space). All three one-sided RMA operations
(MPI Put, MPI Get, MPI Accumulate) take a reference to
such a window, an offset into the window, and a rank in-
teger to indicate which process is the remote target. All
one-sided operations are implicitly non-blocking and must
be synchronized using one of the synchronization methods
described below.

3.1.1 Active Target vs. Passive Target

There are 2 primary “modes” in which the one-sided API
can be used, named “active target” and “passive target”. The
primary semantic distinction is whether or not cooperation
is required by the remote node in order to complete a remote
memory access. All RMA operations on a window must
take place within a synchronization “epoch” (with a start
and end point defined by explicit synchronization calls), and
operations are not guaranteed to be complete until the end
of such an epoch. The active and passive target modes differ
in which process makes these synchronization calls.

Active target operation requires synchronization func-
tions to be called on both the origin process (the one making
the RMA get/put accesses) and the target process (the one
hosting the memory in the referenced window). The ori-
gin process calls MPIWin start/MPIWin complete to be-
gin/end the synchronization epoch, and the target process
must cooperate by calling MPIWin post/MPIWin wait to
acknowledge the beginning/end of the epoch (there is also
a collective MPIWin fence operation which can be sub-
stituted for one or more of these calls). In any case, this
required cooperation effectively destroys the possibility of
implementing the truly one-sided operations that we wish to
provide in GAS languages using active-target mode RMA.

Passive target operation provides more lenient syn-
chronization. In passive-target operation, only the
originating process calls synchronization functions
(MPI Win lock/MPI Win unlock) to start/end the access
epoch. As with active target, all RMA accesses must take
place within such an epoch and are not guaranteed to
complete until the MPIWin unlock call completes. There
are two forms of MPIWin lock–shared and exclusive.
MPI Win lock(exclusive) enforces mutual exclusion on
the window and the RMA operations performed within
the epoch–i.e., it conceptually blocks until it can start
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an exclusive access epoch to the window, and no other
processes may enter a shared or exclusive access epoch for
that window until the process with exclusive access unlocks
(the semantics are actually slightly weaker than this, but the
intuition is correct). MPIWin lock(shared) allows other
concurrent shared epochs from other processes. The spec
recommends the use of exclusive epochs when executing
any local or RMA update operations on the memory en-
compassed by the window to ensure well-defined semantics
(section 6.4.3, p.131).

3.2 Restrictions on the Use of Passive Target RMA

The interface described thus far for passive target RMA
seems reasonable, however unfortunately there are a large
number of restrictions on how it may be legally used. Here
are some of the most important restrictions:

1. Window creation is a collective operation–all pro-
cesses which intend to use a window for RMA (includ-
ing all intended origin and target processes) must par-
ticipate in the creation of that window (section 6.2.1,
p.110).

2. Implementors may restrict the use of passive-target
RMA operations to only work on memory allocated
using the “special” memory allocator MPIAlloc mem
(section 6.4.3, p. 131). This prevents the use
of passive-target RMA on static data and forces all
globally-visible objects to be allocated using this “spe-
cial” allocation call (no guarantees are made about how
much memory can be allocated using this call, and
some implementations may restrict it to a small num-
ber of pinnable pages).

3. It is erroneous to have concurrent conflicting RMA
get/put (or local load/store) accesses to the same mem-
ory location (section 6.3, p.113).

4. The memory spanned by a window may not concur-
rently be updated by a remote RMA operation and
a local store operation (i.e., within a single access
epoch), even if these two updates access different (i.e.,
non-overlapping) locations in the window (section 6.3,
p.113).

5. Multiple windows are permitted to include overlap-
ping memory regions, however it is erroneous to use
concurrent operations to distinct overlapping windows
(section 6.2.1, p. 111).

6. RMA operations on a given window are only permit-
ted to access the memory of single process during an
access epoch (section 6.4.3, p.131)

3.3 Implications of the MPI 2.0 semantics

We now investigate the implications of the above restric-
tions on our effort to implement remote accesses in a GAS
language.

Restriction #1 implies that a GAS language implemen-
tation can not use a separate window per shared object, be-
cause that would require a collective operation for the allo-
cation of shared objects, and object allocation in GAS lan-
guages is often required to be a purely non-collective, local
operation. This means many or all shared objects would
need to be coalesced within a single window. But while ar-
bitrarily large regions (like the entire virtual address space)
can be mapped within a single window, this would severely
limit concurrency due to restriction #4. The same shared
object can be mapped into several windows, but due to re-
striction #5 this probably is not useful.

Restriction #2 implies that all potentially shared objects
must be allocated using MPIAlloc mem(). This restriction
alone may be enough to make MPI-RMA unsuitable for
many GAS languages, unless MPI implementations permit
large amounts of memory to be allocated using this func-
tion (recall that a significant fraction of all data allocated by
GAS programs is typically accessed remotely at some point
in program execution).

Restriction #6 means that an implementation would
probably need at least one separate window for each target
process, as otherwise RMA operations from one process to
different target processes will be unnecessarily serialized.
This may present scalability problems for large numbers of
nodes, depending on how windows are implemented.

The underlying concept addressed by restriction #3 is
fundamental to shared-memory programming and nothing
new. GAS languages generally specify that conflicting ac-
cesses to a single memory location will store an undefined
result to the location (for conflicting writes) or return an un-
defined value (for the read in a read-write conflict). How-
ever, the MPI restriction is unfortunately much stronger–it
says such conflicting accesses areerroneous, which implies
that any resulting behavior after such a violation is possible
(e.g., the MPI implementation would be within its rights to
consider this a fatal error). Unfortunately, it is not feasible
to statically detect all such conflicting accesses (from differ-
ent processes) in user-provided code without application-
specific information (or perhaps even with it). Using a
great deal of compiler analysis, a conservative superset of
the conflicting accesses could be generated, but in a weakly
typed language such as UPC, this is likely to include most of
the accesses. It is impossible to detect such conflicts at run-
time without global communication. In truth, the compiler
analysis required simply to decide that it is safe for a single
process to include any other RMA accesses within the same
epoch as an RMA put or accumulate is non-trivial, although
this problem is an issue of sequential alias analysis which is
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considerably better understood. MPIWin lock(exclusive)
can be used to conservatively prevent concurrent conflicting
accesses from distinct processes (by wrapping every RMA
Put within its own exclusive epoch). However, because this
locks the entire window and serializes all access epochs to
that window, this would drastically reduce the concurrency
of accesses to distinct (i.e., non-conflicting) memory loca-
tions that happen to reside within the same window (which
would be very bad if the entire shared memory resided in
a single window). This also effectively nullifies the ability
to perform non-blocking puts. Another option which might
help is to replace all RMA puts with RMA accumulate oper-
ations where the reduction operation is “MPIREPLACE”–
this has the same semantics as an RMA put, but conflicting
accumulate operations have well-defined semantics (they
behave as if the conflicting accumulates happened in some
serial order)–however, conflicting RMA gets and local loads
to the same data would still be erroneous within the access
epoch, so an untenable amount of conflict analysis would
still be required.

Restriction #4 is particularly onerous for GAS language
implementations. It prevents the local process from mak-
ing any changes to memory that lies within a window dur-
ing a remote access epoch to that window, even to differ-
ent (i.e., non-conflicting) memory locations. This implies
some form of synchronization between the origin and tar-
get process when accessing these locations, which implies
truly one-sided communication is not possible. The MPI
spec recommends the local process perform all updates to
the local memory which falls within a window inside an
exclusive epoch on that window. Because every access to
a language-level local pointer in UPC and Titanium is po-
tentially an access to a shared memory location residing lo-
cally, in the absence of other informationeverylocal store
operation would need to be wrapped within an exclusive ac-
cess epoch (possibly prefixed with a check of whether the
accessed location resides in a window). Similarly, every
local load which could potentially conflict with a remote
RMA put or accumulate to that location would need to be
wrapped within a shared access epoch. The performance
implications of adding such overheads to what should be
simple local memory load/store instructions are staggering.
Note that it is not sufficient for the local process to simply
maintain a permanent epoch on its own window, because
this would prevent remote RMA operations on that window
from making progress. Finally, restriction #4 also implies
that the entire virtual address space of a process can not be
included in a window, because this would include private
memory that is constantly changing, such as the program
stack.

The combination of these effects makes the MPI-RMA
effectively unusable by GAS language implementations: it
is extremely unlikely that a layer could be written on top of

MPI-RMA that would provide an efficient implementation
of GAS language communication semantics. Given that ad-
herence to some of the MPI-RMA restrictions involve such
difficult compiler problems as conflict and alias analysis, it
it likely that many other parallel languages would also find
MPI-RMA a difficult interface to target. It seems likely that
only languages that effectively expose most of MPI-RMA’s
restrictions and programming disciplines to the user at the
language level would find MPI-RMA a useful compilation
target.

4 Related Work

A number of papers on MPI-RMA performance are
available. Luecke and Hu [20] evaluated MPI-RMA perfor-
mance on the Cray SV1, and Luecke et al. [21] compared
MPI-RMA performance to that of the vendor-supplied
SHMEM libraries on the Cray T3E and SGI Origin 2000 ar-
chitectures, finding that the SHMEM interface significantly
outperformed the MPI-RMA implementation available at
the time. Traff et al. [29] examined the performance of
MPI-RMA on NEC SX-5 system, and found its data trans-
fer performance to be similar to that of the MPI 1.0 two-
sided API. Matthey and Hansen [22] report that a produc-
tion molecular dynamics simulation code ran 10-70% faster
on an Origin 2000 system after being converted from MPI-1
to MPI-RMA.

Our strategy of implementing one-sided, asynchronous
messaging on top of MPI 1.1 is not a new one. Dobbelaere
[9] reports implementing a custom one-sided communica-
tion layer over MPI 1, and Booth and Mourao [6] discuss
implementating the MPI-RMA API itself over MPI 1.1.

It appears from Smith [28] that the MPI-RMA pioneers
decided early on to require a separate set of allocation
functions to allocate data that can be accessed by passive-
target one-sided operations. For an alternative approach
that allows the entire virtual memory space to be accessed
by RDMA (even for the tricky case of pinning-based net-
works such as Myrinet), see the description of lazy registra-
tion/pinning methods in [3].

Gropp [13] reviews some of the reasons for MPI’s en-
during success in the parallel computing community.

5 Conclusion

We have shown that despite having certain desirable
characteristics, neither the MPI 1.1 nor the more recent MPI
2.0 RMA extensions make an attractive compilation target
for Global Address Space languages. MPI 1.1, despite its
wide availability and often highly tuned performance, im-
poses too many overheads with its two-sided messaging
paradigm for GAS languages, particularly those in which
small message performance is important. The newer MPI-
RMA API imposes too many semantic restrictions to be a
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useful portable compilation target, at least for parallel lan-
guages which allow aliasing, data conflicts, and/or the illu-
sion of a single, arbitrarily accessible shared address space.

The fact that MPI-RMA makes a poor compilation tar-
get for at least certain classes of parallel languages does not
mean that the API is not useful to application programmers,
who are capable of globally structuring their application to
abide by the specification’s semantic restrictions. The pur-
pose of this paper, in short, is not to malign MPI-RMA, but
rather to explain why it is not suitable as a portable commu-
nication layer for implementing parallel languages such as
Titanium, UPC and Co-Array Fortran. We sincerely hope
that the MPI-RMA interface can be revised in future ver-
sions of the MPI specification to relax some of the prob-
lematic semantic restrictions described in this paper. Per-
haps with some careful changes made to accommodate the
requirements of parallel high-performance language imple-
mentors, it would become more useful as a portable compi-
lation target for these languages.
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